Prize for glaucoma breakthrough

  • May 12, 2015
Prize for glaucoma breakthrough

Paper which marks a breakthrough in glaucoma research wins ophthalmology award.

The work helps not only to bring potential stem cell-based therapies for neurodegenerative disease closer to clinical translation, but also identifies new pathways that could be targeted by pharmaceutical approaches.

Thomas Johnson

A paper by a Gates Cambridge alumnus on a novel mechanism by which stem cell transplantation may help to prevent glaucoma has won top prize at a prestigious ophthalmology awards ceremony.

The research by Thomas V Johnson won first place at the Association for Research In Vision and Ophthalmology (ARVO)/Merck Innovative Ophthalmology Research Awards. 

Published in the journal Brain, the paper is based on work Thomas did as a Gates Cambridge Scholar as well as subsequent research and is part of a collaboration between the University of Cambridge’s John van Geest Centre for Brain Repair and the National Institutes of Health’s National Eye Institute in the United States.

Dr Johnson’s research focuses on glaucoma, a neurodegenerative disease of the optic nerve, the “cable” which carries visual information from the retina in the eye to the brain.  Glaucoma causes the progressive loss of retinal ganglion cells, which make up the optic nerve, eventually leading to vision loss and potentially blindness.  Previous research by Dr Johnson showed that transplantation of stem cells from the bone marrow into the eye could protect the optic nerve in a rodent model of glaucoma, but the mechanism by which that protection occurs was unclear.

It demonstrates that bone marrow-derived mesenchymal stem cells produce and secrete a large number of proteins that each individually help to protect retinal ganglion cells from stress and cell death.  Together, the additive effect of these proteins (the stem cell “secretome”) appears to confer potent neuroprotection.  Dr Johnson’s team identified one particularly strong neuroprotective factor, platelet-derived growth factor or PDGF, that, when injected into a glaucomatous eye on its own, protected almost 90% of the optic nerve fibres that otherwise would have degenerated.

Dr Johnson [2006], who did his PhD in Brain Repair, says: "The work helps not only to bring potential stem cell-based therapies for neurodegenerative disease closer to clinical translation, but also identifies new pathways that could be targeted by pharmaceutical approaches."

Dr Johnson is currently based at the Johns Hopkins School of Medicine.

Latest News

New US Scholars selected as part of 2025 cohort

Thirty-five of the most academically outstanding social leaders in the US have been selected to be part of the 2025 class of Gates Cambridge Scholars at the University of Cambridge, marking the Scholarship’s 25th anniversary. The US Scholars-elect, who will take up their awards this October as part of an anniversary cohort of 100 Scholars, are […]

How to get heard in an increasingly noisy world

How do you get your ideas across in an increasingly noisy and divided world? Three Gates Cambridge Scholars discuss their innovative solutions in the second episode of series two of our podcast, So, now what? Jakub Szamalek [2009], Ragnhild Freng Dale [2013] and Cansu Karabiyik [2016] discuss the different ways they have innovated, through video […]

Celebrating agricultural innovation in Africa

A foundation started by a Gates Cambridge Scholar is leading a Cambridge Festival event in March to celebrate agricultural innovation in Africa where a new project on food security will be launched. The Agri-Innovation & Impact Project (AGRIIP) will be launched at the Roots of Resilience event on 27th March. It is designed to empower […]

What makes Earth tick

It was during his master’s that Alex Myhill [2022] was introduced to Earth Science and realised just how much we don’t understand about the Earth. He wanted to explore further and his PhD seeks to understand the dynamics that make the Earth tick. He is developing new techniques for the efficient computation of whole Earth […]