Potential breakthrough for bridge failure prediction

  • July 20, 2020
Potential breakthrough for bridge failure prediction

A new study led by Kasun Kariyawasam could be a real step forward in addressing the major cause of bridge failure.

What is believed to be the first-ever centrifuge test programme to show how sensitive bridges are to scour – the most common cause of bridge failure around the world – has been conducted by researchers at the University of Cambridge.  The tests also found that bridges with deep foundations have higher frequency sensitivity to scour than those with shallow foundations.

Scour is the gradual erosion of soil around a bridge due to fast-flowing water and is thought to account for half of all bridge failures around the world.

Being able to reliably monitor it could help bridge engineers take timely countermeasures to safeguard against failure.

A paper published in the Journal of Civil Structural Health Monitoring lead-authored by Gates Cambridge Scholar Kasun Kariyawasam describes the development of what is believed to be the first-ever centrifuge-testing programme to establish the sensitivity of bridge natural frequency to different forms of scour in different types of bridges.

A 1/60 scale model of a two-span integral bridge with 15m spans was tested at varying levels of scour. Models of three other types of foundation were also tested in the centrifuge at different scour levels.

Kasun [2016], who is doing a PhD in Engineering, said: “Most of the current techniques to detect scour have limitations related to cost, reliability and robustness and these limitations generally arise from the fact that the scour monitoring sensors have to be underwater. This research studied an alternative monitoring technique, which does not require any underwater sensor installations. It attempts to detect scour by tracking the changes in bridge vibration properties, such as natural frequency. This technique is very appealing because it is a real-time, remote monitoring technique.”

Another important finding is that the frequency sensitivity to “global scour” is slightly higher than the sensitivity to “local scour”, for all foundation types studied in this research.

Kasun says: “Such significant changes in natural frequency give new insights to bridge engineers and allow us to track natural frequencies of bridges to detect scour.”

Professor Campbell Middleton, Laing O’Rourke Professor of Construction Engineering at the University of  Cambridge, who supervised Kasun’s research, said: “Scour of bridge foundations is by far the most prevalent cause of failure of bridges around the world yet, to date, no practical and effective monitoring technique has been devised to give advanced warning of the risk of impending collapse. Various researchers have tried using natural frequency based techniques to detect damage in bridges. However, these have tended to focus on identifying specific local defects, such as cracks or corrosion, and have met with very limited success.

“The technique examined in this paper focusses on characterising changes in the global vibrational response of a bridge due to the loss of soil around piled foundations as a result of scour. Our experimental centrifuge testing programme observed variations in natural frequency of up to 44% as a result of scour which indicates that this approach could, for the first time, provide a predictive tool for warning of impending scour failure in bridges built on piled foundations. This would be a very significant step forward in ensuring the safe operation of our bridge infrastructure.”

Latest News

Taking a broader lens to women and development

Tara Cookson’s research has always been ahead of the curve when it comes to women and development. Her PhD supervisor, Professor Sarah Radcliffe, called it “highly original”. Since leaving Cambridge Tara has continued to break new ground, founding the feminist research consultancy Ladysmith and taking up a Canada Research Chair in the School of Public […]

What makes humans unique?

Sara Sherbaji’s research explores fundamental questions of what makes humans unique and the role culture plays in our evolution. Her questions build on her Master’s dissertation, on her work as a psychology lab coordinator and on her experience of fleeing the Syrian war. She says:  “Since leaving Syria during the war, my goal has been […]

At the heart of global economic development policy

Charles Amo Yartey [2002] always wanted to follow in his father’s footsteps as an accountant. Growing up in Ghana, he applied to do Business Administration at university, but, because he had not studied business at school, he was offered Economics. It proved to be the start of a fascinating career at the centre of global […]

Are AI models as divided as we are?

Elections often reveal how deeply divided humanity can be. This year, as increasing polarisation continued to shape our world, we asked: Does this division transfer to our AI? Our journey to answer this question began in 2022, when we started our PhDs as Gates Cambridge Scholars. Two concurrent events captured this moment in history: the […]