New method for studying role of TEs in genetic changes

  • November 15, 2021
New method for studying role of TEs in genetic changes

A study led by Rebecca Berrens looks at a new method for studying the role of transposable elements in genetic information

We believe the studies will reveal the molecular origins of mammalian development and could pave our way towards identification and treatment of diseases with genetic bases.

Rebecca Berrens et al

A new study reports a novel technique for studying the development of transposable elements in genetic information which can lead to genetic diseases and cancer.

The study, ‘Locus-specific expression of transposable elements in single cells with CELLO-seq’, is published in Nature Biotechnology. Lead author is Rebecca Berrens [2012].

It addresses the role of transposable elements [TEs] and how they can change their genomic position, potentially causing genetic diseases and cancer.

It is commonly believed that genetic information in every cell of our body is the same, but this is only true for protein coding genes, which make up 2% of the genome. In fact, 50% of the genome is comprised of TEs. While in most mature cells TEs are inactive, during early development, the very first embryonic cell divisions, TEs are very active.

The role of TEs in regulating diverse biological processes, from early development to cancer, is becoming increasingly appreciated by scientists. However, unlike other biological processes, next generation single-cell sequencing technologies are poorly suited to investigating TE expression: in particular, their highly repetitive nature means that short cDNA reads cannot be unambiguously mapped to a specific location.

The researchers chart how they have developed an experimental and analytical method to investigate whether TEs are transcriptionally active in all or only a subpopulation of cells during embryonic development. CELLO-seq is a computational framework for performing long-read RNA sequencing at single cell resolution.  Using the novel technique to study the relationship between the expression of individual elements and putative regulators in 2-cell mouse blastomeres and human-induced pluripotent stem cells, they found evidence of distinct regulatory mechanisms.

The researchers, including Dr Berrens [2012] , who did her PhD in Biological Science, say: ”We believe the studies will reveal the molecular origins of mammalian development and could pave our way towards identification and treatment of diseases with genetic bases.”

*Picture credit: PublicDomainPictures and Wikimedia commons.

Latest News

Scholar scoops neuroscience award

Gates Cambridge Scholar Andrea Luppi has been named one of 25 rising stars in Neuroscience by The Transmitter, a leading neuroscience magazine. The Transmitter’s Rising Stars of Neuroscience recognises early-career […]

The meaning of intelligence

“Cephalopods are beautifully strange animals that look like nothing else on Earth, but they are very smart. Hearing that can be eye-opening for some. I hope to leverage that unexpectedness […]

An Alaskan odyssey

Two authors of the Arctic were in conversation at Bill Gates Sr. House this week to celebrate the publication of Ben Weissenbach’s new book North to the Future. Ben was […]

Re-imagining plural, inclusive design futures in AI

Two Gates Cambridge Scholars are co-authors of a new paper on a human-AI art experiment involving the works of the Bangladeshi artist S M Sultan. Abdullah Hasan Safir [2024] from […]