Links between low quality pollen and bee survival

  • April 27, 2016
Links between low quality pollen and bee survival

Eating low quality pollen could protect bees from parasites, says new study.

Eating low quality pollen may protect bees from attack by parasites, according to a new study.

The study, now available online and published in the American Naturalist in June, says that a low quality diet may have compensatory benefits for bees because it protects them from their natural enemies.

Those natural enemies include parasitical wasps, which form the largest group of wasps. These place their larvae into or next to the eggs or larvae of other insects, including bees. When the wasp larva hatches from the egg, it feeds on its host. The fully fed wasp larva then forms a pupa, and eventually an adult parasitic wasp emerges.

In the new study, researchers, including first author Dakota Spear, a Gates Cambridge Scholar in the Department of Zoology, studied the rate of parasitic feeding by wasps on mason bees which specialise in eating low-quality pollen from the plant family Asteraceae. They compared them with parasitic feeding on bees eating higher quality pollen.

They found that bees eating low quality pollen were significantly less frequently the target of parasitic feeding than other bee species.

They then fed wasp larvae three different types of pollen mixture, including Asteraceae pollen. The wasp larvae were much less likely to survive if it was fed on the Asteraceae pollen.

Dakota Spear [2015], who is doing an MPhil in Zoology, said: "This study broadly demonstrates that protection from parasitism may be one of the forces driving the evolution of specialisation in low-quality pollen in bees. This study increases our understanding of the evolution of host-parasite interactions between bees and their parasites, a topic that may be particularly relevant as bee populations decline around the world, in many cases due to increased prevalence and virulence of parasites and pathogens. Our results suggest that in the long-term, the ability to specialise in unpalatable foods could help protect specialist bee species from parasites, especially as humans influence the distribution or pervasiveness of parasites through climate change and species introductions."

She adds that understanding the defensive potential of lower quality pollen could open up new avenues for boosting bee survival rates, such as the possibility of making those types of pollen more widely available in agricultural land, to reduce parasitism rates.

*Picture credit: Wikimedia.

 

Dakota Spear

Dakota Spear

  • Alumni
  • United States
  • 2015 MPhil Biological Science (Zoology)
  • Churchill College

I currently live and work in Seattle, Washington, USA. For more information please see my LinkedIn page.

Previous Education

Pomona College

Latest News

Leading with courage in turbulent times

History is plastic and leaders have more agency today than they may have tomorrow so it is vital that they use it courageously to build a better future, the co-founder […]

Gates Cambridge weddings

The Gates Cambridge community has forged lifelong friendships, business partnerships and even some marriages. Since the Scholarship was launched 25 years ago, there have been a number of Gates Cambridge […]

Scientists identify five ages of the human brain over a lifetime

Neuroscientists at the University of Cambridge, led by Gates Cambridge Scholar Dr Alexa Mousley [2021], have identified five “major epochs” of brain structure over the course of a human life, […]

Towards scalable pro-social AI

Yaroslava [Yara] Kyrychenko began her PhD in Psychology in 2022, just months after Russia invaded her country Ukraine. It aims to understand how social media, and social technology more generally, can […]