Identification of disease-causing proteins could prompt new diabetes treatments

  • March 1, 2023
Identification of disease-causing proteins could prompt new diabetes treatments

Mine Koprulu leads study that identifies proteogenomic data which could result in new treatments for diseases such as diabetes

We systematically linked genetic variation, blood protein levels and disease risks to be able to differentiate proteins which are likely to cause a disease from those which may only be a result of diseases. Identifying causal proteins is important because only interventions on causal proteins will lead to safe and effective treatments.

Mine Koprulu

New research led by a Gates Cambridge Scholar has identified hundreds of proteins that might contribute to the onset of common, chronic metabolic diseases such as type 2 diabetes, and consequently pathways to potential treatments.

The study, published in Nature Metabolism, was led by an international research team from the Medical Research Council (MRC) Epidemiology Unit, University of Cambridge, the Precision Healthcare University Research Institute (PHURI) at Queen Mary University of London, and the Berlin Institute of Health at Charité (BIH) at Universitätsmedizin Berlin in Germany.

The researchers successfully linked more than 900 regions in the human genome to almost 3,000 proteins in our blood, with many of these not previously identified. The team then applied these findings to existing genetic studies for hundreds of diseases and found more than 500 gene-protein-disease links.

For example, the team showed for the first time that people with high levels of a hormone called GRP are less likely to develop type 2 diabetes, most likely because it decreases the chances of becoming overweight. This ‘proteogenomic’ evidence supports GRP as a potential target for the prevention and/or treatment of diabetes.

The study has led to a greater scientific understanding of hundreds of genome regions, which open the door to more targeted and ultimately successful treatment options in the future as proteins are essential functional units of the human body and the most common target of drugs that exist today.

Senior author Professor Claudia Langenberg, director of the Precision Healthcare University Research Institute (PHURI) at Queen Mary University of London and MRC Investigator and programme lead at the MRC Epidemiology Unit at the time of the study, said: “Thousands of regions in our genome have been identified to increase our risk for developing different diseases, but for most of them we have a poor understanding of why this is.

“By measuring and integrating information on thousands of proteins in human plasma, we were able to create robust links between the genes that encode these proteins to many different diseases and demystify about 200 regions. This really narrows down the potential therapeutic targets at each genomic region, often a bottleneck for translation of genomic discoveries.”

Senior author Professor Maik Pietzner, Professor at the PHURI and group leader at the Berlin Institute of Health at Charité (BIH), said “In an additional promising example, we identified a protein, called DKKL1, to be involved in multiple sclerosis that reinforces the depletion of certain immune cells – B-cells – as intervention.

“These early-stage results are exciting and show the potential of such technologies for drug discovery, not just for metabolic diseases.”

Mine Koprulu [2017], lead author of the study, Gates Cambridge scholar and PhD student at the MRC Epidemiology Unit, said: “The biological mechanisms underlying diseases are not always very well understood. To address this issue, we systematically linked genetic variation, blood protein levels and disease risks in this study to be able to differentiate proteins which are likely to cause a disease, for example diabetes, from those which may only be a result of diseases. Identifying causal proteins is important because only interventions on causal proteins will lead to safe and effective treatments. We are hugely grateful to the EPIC Norfolk volunteers and team who made this research possible.”

Latest News

Exploring the ideological brain

A Gates Cambridge Scholar is launching her ‘startingly original’ book on political neuroscience with an appearance at two major festivals and a workshop at Bill Gates Sr. House. Leor Zmigrod’s book, The Ideological Brain: A Radical Science of Susceptible Minds, is published on 20th March by Viking. It is described by the psychologist and psycholinguist […]

The coming microstructure revolution

Hana Butler Gutiérrez likes tiny things, but she wants to make a big impact. For her MPhil in Micro- and Nanotechnology Enterprise she is looking to deepen her understanding of how micro- and nanostructures influence material performance, with a focus on scalable manufacturing techniques. She believes that microstructures have the potential to revolutionise industries by […]

The plight of the bumblebee

Insects are in decline globally, and pollinator loss is of particular concern. It is said that one in three bites of food we eat is thanks to pollination by bees, underlining the importance of these buzzing creatures. In a time of changing landscapes and politics, bees find themselves in trouble. Meadows are being paved into […]

Arts impact: Gates Cambridge at 25

Gates Cambridge Scholars work in every corner of the cultural industries, contributing to new ideas in the world of art, to different ways of viewing the role of music in society and different ways of telling stories. Visual arts When it comes to the visual arts, for instance, several Scholars have played an important role […]