Building on nature’s complex architecture

  • June 6, 2014

New techniques that contribute to humans' ability to create complex synthetic matter have been developed by scientists at the University of Cambridge.

New techniques that contribute to humans’ ability to create complex synthetic matter have been developed by scientists at the University of Cambridge.

Research on these new techniques, led by Derrick Roberts [2012] and based on his PhD research which focuses on ways to synthetically emulate the building blocks of life in order to engineer new materials for applications in nanotechnology, is published in the current edition of the Journal of the American Chemical Society.

Derrick, who is undertaking a PhD in Chemistry under the supervision of Dr Jonathan Nitschke, says: “Nature relies on the hierarchical self-assembly of atoms and molecules to produce the exquisite biological machinery that underpins life as we know it: peptide chains fold up into highly complex proteins, single-stranded DNA associates to form the well-known double helix, and lipids self-organise into the membranes that define the boundaries of cells. A central focus of our research is to employ the principles of molecular self-assembly to control how molecules can interact with each other to make larger assemblies to the order of several nanometers.

“Deciphering the rules that govern self-assembly will shape the future of chemical synthesis, allowing chemists to produce highly complex molecular architectures with little synthetic effort (ideally, the architectures build themselves). If designed carefully, these architectures will exhibit properties useful to drug delivery, solar energy conversion, nanoelectronics, pollutant sensing and chemical hazard mitigation.”

In most self-assembling systems, the final product is typically the most energetically stable structure. In some instances, however, the most stable structure is not the desired outcome; instead, one might wish to target an unusual, less-stable structure as it may have interesting properties for one of the aforementioned applications. Derrick’s research examines methods for trapping a self-assembling system at a less stable structure.

Derrick states: “Our study proposes a powerful concept for controlling the outcome of a self-assembly reaction by circumventing the natural energetic preferences of the self-assembling system. As such, these techniques contribute to the growing synthetic “toolbox”, which continues to offer ever more powerful means of building nanotechnology through molecular self-assembly.”

 

Latest News

Gates Cambridge seeks Community Platform Officer

The Gates Cambridge mission is to build a global network of future leaders committed to improving the lives of others. We achieve this mission by selecting outstanding scholars from countries […]

Educating the world about the Aztec civilisation

Jessica Fernandez de Lara Harada was approached by the production team behind the landmark BBC Arts Civilisations: Rise and Fall documentary series at the start of the year. “They were […]

Fossils reveal anacondas have been giants for over 12 million years

Scientists led by Gates Cambridge Scholar Andrés Alfonso-Rojas [2022] has analysed giant anaconda fossils from South America to deduce that these tropical snakes reached their maximum size 12.4 million years ago […]

Celebrating Bill Gates Sr.

Gates Cambridge celebrated the past, present and future of the scholarship programme this weekend at an event to mark what would have been Bill Gates Sr.’s 100th birthday. The event […]